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Rings are well known invariants of nets. In this work, a generalization of the

concepts of cycles and rings is introduced. Infinite paths in periodic graphs are

defined as connected, acyclic, regular subgraphs of degree two; geodesics are

defined as infinite paths such that the unique path between any pair of vertices is

a geodesic path in the whole graph. An infinite path can be thought of as an

infinite cycle and a geodesic as an infinite ring. In a further step, a geodesic fiber

is defined as a minimal 1-periodic subgraph that contains all geodesic paths

between any pair of its vertices. Geodesic fibers are topological invariants of

periodic graphs whose labeled quotient graphs are subgraphs of the labeled

quotient graph of the whole graph; the paper describes applications of geodesic

fibers to the analysis of the automorphisms of minimal nets, crystallographic and

non-crystallographic nets.

1. Introduction

The role of cycles and rings as topological invariants of nets

has been stressed by many authors (see Goetzke & Klein,

1991, for example). The concept of cycle is the graph-theor-

etical analog to that of closed curves that are homeomorphic

to the circle in Euclidean geometry. It is thus a surprise, in

comparison, that no effort seems to have been devoted to

adapt the concept of straight line or half-line to periodic

graphs. This is the objective of this work. After the first section

providing a brief survey of the graph-theoretical tools

commonly used to describe crystallographic nets and their

quotient graphs, the definitions of the new concepts of infinite

path, infinite geodesic path, strong geodesic and geodesic fiber

are given. Among geodesic fibers, an important role is played

by T-fibers, which are invariant with respect to some auto-

morphism from the translation subgroup T defining the peri-

odic graph. It is shown that the labeled quotient graph of any

geodesic T-fiber is isomorphic to some subgraph of the labeled

quotient graph of the periodic graph with respect to the

corresponding translation group, the labeling being conserved

while taking the subgraph. Moreover, it is shown that any local

automorphism of the periodic graph exchanges parallel

T-fibers. This property turns geodesic fibers into nice topo-

logical tools for the study of periodic graphs. Illustrations are

given through the analysis of local automorphisms in minimal

nets, and crystallographic and non-crystallographic nets.

2. Graph theory in crystallography

The basic definitions of graph theory given hereafter have

been adapted from Harary (1972). In short, we say that a

graph G = (V, E, m) is a pair of vertex and edge sets, V and E,

respectively, with an incidence map m: E 7! V2. If m(e) =

(u, v), we use the shorthand notation e = uv and say that e runs

from a tail u to an end v; u and v, collectively called the

endpoints of the edge, are adjacent vertices and are incident to

e. The degree of a vertex is the number of incident edges; a

graph is regular if all its vertices have same degree. A loop is

an edge that admits only one endpoint; the loop must be

counted twice to obtain the degree of the corresponding

vertex. The incidence map explicitly determines an orientation

on the graph G, which enables us to define the reverse

(negative) of the edge e = uv as the same edge e� = vu

traversed in the opposite direction. Each edge e has positive

and negative orientations distinguished as e+ (= e) and e�. If

more than one edge admits the same endpoints, we say that G

has multiple edges. Notice that our definition of graph

corresponds to what is usually called a pseudograph. A graph

without loops or multiple edges is then called a simple graph.

A graph G0 = (V0, E0, m0) is a subgraph of G if V0 and E0 are

subsets of V and E, respectively, and if the incidence function

m0 is a restriction of m. A proper subgraph of G is different

from G and from the empty graph (the graph with no vertices).

If G0 and G00 are two subgraphs of G such that G0 0 is a proper

subgraph of G0, we also say that G0 is a proper supergraph of

G00. A subgraph G0 of G is called a maximal subgraph

(respectively: a minimal subgraph) with respect to some

property P if P holds for G0 but does not hold for any proper

supergraph (respectively: subgraph) of G0 in G. A spanning

subgraph of G admits the same set V of vertices as the graph

G. The intersection (respectively, union) graph G0 \G00

(respectively, G0 [G00) of two subgraphs G0 and G00 of G is the

subgraph whose vertex and edge sets are defined as the



intersections (respectively: unions) of the vertex and edge sets

of G0 and G00 and whose incidence function is the restriction of

the incidence function of G to its edge set.

A walk W between two vertices u0 and un (the tail and end,

together called the endpoints of the walk) is an alternate

sequence of vertices and edges u0e0 . . . uieiui+1 . . . un, where

each element of V[ E is incident to the following. As the

vertices can be recovered from the only indication of the

edges, they will not be indicated in the sequel. A graph is

connected if there is a walk between any pair of vertices. A

component of a graph is a maximal connected subgraph. The

length |W| of a walk W is the number of edges of the sequence.

A path is a walk that does not run twice through the same

vertex. A geodesic path is a path of minimum length between

its two endpoints. The distance d(u, v) between two vertices u

and v is the length of a geodesic path between them. A cycle is

a path with only one endpoint. However, since one comes

back to the initial vertex after running along the cycle, the

choice of the endpoint is rather arbitrary. If one does not need

the reference to some particular origin (or base) vertex and

analyzes the cycle as a whole, it is customary to characterize it

by the absence of endpoint. It is worth mentioning that cycles

are sometimes considered as finite connected regular

subgraphs of degree 2. We shall say that a graph is c-connected

if (a) it is connected and (b) there is at least one cycle or one

loop traversing each vertex. A graph without cycle is called

acyclic. A component of an acyclic graph is a tree. If a spanning

tree is chosen in a graph, a chord is any edge that does not

belong to the tree, so adding a chord to a tree will close exactly

one cycle. The cyclomatic number is the number of indepen-

dent cycles, equal to the number of chords of the graph.

In opposition to paths and cycles, walks can run several

times through the same vertices and edges. It is then con-

venient to define a 1-chain as a formal (commutative) sum of

edges affected with integer coefficients. By extension of the

previous definitions, a 1-chain will be called a walk, a path or a

cycle if it is possible to order the oriented edges of the sum

into a sequence with the respective properties. We will then

say that a walk W decomposes into a path P and some cycles Ci

(i = 1, . . . , n) if it is possible, by changing the order of the

edges, to write down the corresponding 1-chain as the sum W =

P + �Ci. The converse property is analyzed in Appendix A. It

is worth noting that the decomposition may not be unique.

The support of a 1-chain is the subgraph containing the edges

with non-null coefficient together with the incident vertices.

An automorphism of a graph G is a pair ( fV, fE) of bijective

maps of V and E on themselves respecting the incidence map:

m[ fE(e)] = ( fV(u), fV(v)) for e = uv. Dropping all indices and

using the shorthand notation, we get the simplified definition

f(uv) = f(u) f(v). An automorphism f is said to be a local

automorphism if the distance between any vertex and its

image by f is uniformly bounded by some constant called the

norm of the automorphism, and denoted j f j. Thus, d{u, f(u)}�

j f j for all u 2V. An automorphism f of G is said to act freely on

G if there is no fixed element, that is: f(x) 6¼ x for all x of

V [ E. Following Delgado-Friedrichs (2004), we say that the

pair (G, T) is an n-periodic graph if G is a simple graph

admitting a free abelian group T of automorphisms of rank n

acting freely on G and such that the number of (vertex and

edge) orbits of G by T is finite. The elements of Tare called the

translations of the periodic graph. In the following, we always

admit that T is a maximal translation group in the sense that

the pair (G, T0) is not an n-periodic graph for any group

extension T0 of T. Crystallographic nets are n-periodic graphs

whose full automorphism group is isomorphic to some

n-dimensional space group (Klee, 2004).

If (G, T) is a periodic graph, we denote by V/T and E/T the

sets of vertex and edge orbits of G by T, also called vertex and

edge lattices, respectively. We form the quotient graph G/T �

(V/T, E/T, mT), where the incidence function is defined by the

relationship mT([uv]) = ([u], [v]), where [x] is the orbit of the

element x of V [ E by T. The map qT sending the element x on

its orbit [x], which is called the natural projection of (G, T) on

its quotient G/T is a homomorphism of graphs satisfying

qT(uv) = qT(u)qT(v). The labeled quotient graph (Chung et al.,

1984) is formed by attributing a voltage, i.e. an element from

the translation group T, to each edge of the quotient graph.

Labeled quotient graphs are therefore voltage graphs,

following Gross & Tucker (2001). Since all vertices of a vertex

lattice [u] are equivalent by translation, one can choose an

arbitrary vertex of [u] as the origin, u0, and index all other

vertices of [u] as ut, where t is the translation mapping u0 on

ut = t(u0). If the edge e0 of (G, T) links vertex u0 to vertex vs,

then we attribute the voltage s to the edge lattice [e]. Notice

that we have for the translated edge:

et ffi tðe0Þ ¼ tðu0vsÞ ¼ tðu0ÞtðvsÞ ¼ utvsþt:

If the edge e admits the voltage t, then the reverse edge e�

admits the opposite voltage �t (we shall also use the multi-

plicative notation t�1). The whole process can obviously be

inverted. Given a voltage graph K with voltages from a free

abelian group T of rank n, one can generate a unique n-peri-

odic graph, called the derived graph.

Example 2.1. Consider the square net N = (44) shown in Fig.

1(a). This is the infinite graph defined by V = Z2 and E = {pq:

(p, q) 2 Z2
� Z2 and q = p + i or q = p + j} with i = (1, 0) and j =

(0, 1). Let us define the mapping ft of (44) by ft(p) = p + t for

each t and p of Z2; clearly ft is a graph automorphism and acts

freely on (44). The automorphism group T = { ft: t 2 Z2} with

the ordinary law of composition is isomorphic to the free
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Figure 1
(a) The square net and (b) its labeled quotient graph.



group Z2. Now, all the vertices of N are equivalent by T to the

origin a = (0, 0) and all the edges are equivalent to ai or to aj,

so the square net with one vertex orbit and two edge orbits is a

2-periodic graph. The quotient graph N/T, which has then one

vertex and two edges, is the bouquet of two loops represented

in Fig. 1(b). One loop is the image by the natural projection of

the edge ai and has voltage fi (for which we use the conven-

tional crystallographic notation 10) since vertex i is the image

of vertex a by the automorphism fi. The same argument leads

to attribute the voltage 01 to the second loop, image by the

natural projection of the class of the edge aj.

The net voltage on a walk (respectively path and cycle) in

the quotient graph G/T is the sum of all the voltages along the

walk, with all edges oriented from the tail to the end of the

walk. A cycle of null voltage in G/T is the natural projection of

a cycle of G; otherwise we shall always consider oriented

cycles since they can be traversed in both directions with

opposite net voltages. Thus, an oriented cycle of net voltage t is

the projection of a path between two vertices of G related by

the translation t. A ring in a graph G is a cycle that does not

admit any short-cut. This means that, for any pair of vertices of

the cycle, the shortest path between them along the cycle is a

geodesic path in the graph. A strong ring is a cycle that, as a

1-chain, cannot be written as a sum of shorter cycles. Rings

and more particularly strong rings are important topological

invariants in periodic graphs (Goetzke & Klein, 1991).

3. Geodesics and fibers in periodic graphs

This section introduces the concept of geodesic, which

generalizes that of straight line in Euclidean geometry to

periodic graphs. We start with the formal definitions of infinite

path and infinite geodesic paths, which occur as natural

extension of the geometric concept to graph theory. There are,

however, two striking differences with geometry. In general, it

is not possible to talk of the geodesic path between two

vertices of a graph. Moreover, not every (finite) geodesic path

can be prolonged into an infinite geodesic path: few directions

in the graph appear to have this privilege. This motivates the

definition of strong geodesics and fibers along some direction

in a periodic graph. It is known that the geometry of a space,

Euclidean or non-Euclidean, is associated to the nature of its

geodesic curves, sometimes called intrinsic straight lines.

Analogously, we will find that fibers are important topological

invariants of periodic graphs.

Definition 3.1. An infinite path in a periodic graph (G, T) is a

connected, acyclic, regular subgraph of degree 2.

Note that a path, in the sequel, always means a finite path as

it is defined in x2; the use of the adjective infinite is then

mandatory to specify the infinite path.

Definition 3.2. An infinite geodesic path or more simply a

geodesic L in a periodic graph (G, T) is an infinite path such

that the unique path in L between two of its vertices is a

geodesic path in G.

Example 3.1. Figs. 2(a) and 2(b) illustrate Definitions 3.1 and

3.2 in the square net. Both subgraphs are infinite paths but

only the latter, with no short-cut, is a geodesic.

The concepts of infinite path and geodesic generalize those

of cycle and ring, respectively, in infinite graphs. Looking at

the alternative definition of the cycle given in x2, an infinite

path could also be called an infinite cycle; the definition of the

geodesic can be rephrased from that of the ring by observing

that a geodesic is an infinite path without short-cut.

An especially important kind of infinite path is obtained by

unwrapping (or lifting) a cycle C of the quotient graph G/T.

We will denote such an infinite path by ]C[ and define it as a

component of the preimage q�1
T ðCÞ. Only cycles that possess a

shortest length among all those cycles (or loops) or combi-

nation of cycles with the same net voltage t can be lifted to a

geodesic. In some periodic graphs, however, one can find

different cycles, or closed walks, whose net voltages corre-

spond to multiples of some translation t. The necessity of

comparing the lengths of paths lifted from such closed walks

motivates the next definition.

Definition 3.3. Let us denote by Ext(t) the maximal 1-periodic

extension in T of the subgroup hti generated by some trans-

lation t 2 T; Ext(t) is thus a subgroup of T. The reduced length

of a closed walk, or combination of cycles, W of G/T with net

voltage t is defined as the ratio |W|/k where k is the index of hti

in Ext(t).

A necessary and sufficient condition for a cycle C with net

voltage t to be lifted to a geodesic ]C[ is that it has shortest

reduced length among all those combinations of cycles with

total net voltage in Ext(t). If a geodesic ]C[ is interrupted at

some vertex x, we will call each subgraph a half geodesic. If, on

following the orientation induced in G by that of the cycle C,

we find that the half geodesic runs outward from the terminal
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Figure 2
Infinite subgraphs of the square net (44): (a) an infinite path, (b) a
geodesic, (c) a strong geodesic, (d) a 1-periodic ladder that is not
geodesically complete, and (e) a 1-periodic ladder that is geodesically
complete but not minimal.



vertex x of degree 1, we will denote it by [xC[ or [C[ if the

terminal vertex is not known; if it runs towards the terminal

vertex, we use the complementary notations ]Cx] or ]C].

Definition 3.4. A strong geodesic is a geodesic such that any

path between two of its vertices is the unique geodesic path

between them in G.

Example 3.2. Fig. 2(c) shows a strong geodesic in the square

net. Not all periodic graphs possess strong geodesics, as can be

seen by examining the net (34.6) shown in Fig. 3. The following

definitions allow a convenient generalization of the concept.

Definition 3.5. We say that a subgraph F of a graph G is

geodesically complete in G if, for any pair of its vertices, it

contains all geodesic paths between them in G.

Definition 3.6. (Fibers). A 1-periodic subgraph (F, S) of a

periodic graph (G, T) is called a geodesic fiber or simply a fiber

if (a) the translation group S = hti can be generated by some

local automorphism t of G, (b) the subgraph F is geodesically

complete in G, and (c) F is minimal with respect to the

conditions of periodicity (a) and completeness (b). We say that

the fiber (F, hti) runs along the direction t. We speak of a

T-fiber when t is in T; two T-fibers (F1, hsi) and (F2, hti) such

that Ext(s) = Ext(t) are said to be parallel.

As illustrated below, the ‘minimum’ criterion does endow

T-fibers with nice properties; in particular, it will be seen that

geodesic T-fibers reduce to strong geodesics when these exist.

Example 3.3. The three conditions (a), (b) and (c) of Defini-

tion 3.5 clearly hold for the strong geodesic of Fig. 2(c), which

is then also a T-fiber along the direction 01 of the square net.

Example 3.4. The ladder of Fig. 2(d) is 1-periodic and admits

the translation 02 of the square net as the generator of its

translation group. However, it is not geodesically complete in

(44) since the missing rungs are short-cuts to any path between

their endpoints. Adding these rungs to the subgraph, one gets

the ladder shown in Fig. 2(e), which is 1-periodic with trans-

lation 01, geodesically complete in (44), but not minimal.

Indeed, it admits as subgraphs the two parallel T-fibers, which

are the replicas of the strong geodesic shown in Fig. 2(c).

Example 3.5. Fig. 3 exhibits two geodesic T-fibers of the net

(34.6) along distinct crystallographic directions, evidencing the

occurrence of fibers even when strong geodesics are absent.

Proposition 3.1. Through any vertex of a periodic graph, one

cannot draw more than one T-fiber parallel to any direction.

Proof. Suppose that (F1, hs i) and (F2, hti) are parallel T-fibers

containing a common vertex. Then the intersection graph

F1 \ F2 is 1-periodic along some direction r with hri = hsi \ hti

and geodesically complete. Since both fibers F1 and F2 are

minimal, their intersection cannot be a proper subgraph of any

of them; since it is not empty, we must have F1 = F2. &

Automorphisms clearly respect geodesics, strong geodesics

and fibers. In particular, the fiber (F, hti) is mapped by any

automorphism � of the periodic graph (G, T) onto the fiber

(�F, h�.t.��1
i). This observation is quite general, but we will

focus exclusively on T-fibers in the sequel, looking at their

images, first by the translations of the periodic graph, then by

arbitrary local automorphisms.

Proposition 3.2. T-fibers (F, hti) of a periodic graph (G, T) are

mapped on disjoint T-fibers, running along the same direction

t, by translations that do not belong to their translation

group hti.

Proof. Suppose that (F, hti) is some T-fiber of (G, T) and let

s 2 T be some translation of T; since T is abelian, the image sF

of F by s is also a T-fiber along t. From Proposition 3.1, two

situations can then arise:

(i) F and sF have a common vertex; then F = sF, which

means that F is invariant by s and requires that s 2 hti, or

(ii) F \ sF = ;, if s =2 hti. &

Example 3.6. Considering again the example of the square net,

the ladder of Fig. 2(e) could not be a T-fiber since it has a non-

empty intersection with its image by the translation 10.

4. Quotient graph of a T-fiber

Consider the different mappings represented in the following

diagram between a T-fiber (F, hti), the periodic graph (G, T)

and their respective quotient graphs F/hti and G/T:
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Figure 3
Two geodesic fibers of the net (34.6) along the directions (a) 11 and (b) 21.



F �!
i

G

qhti

?
?
y

?
?
yqT

F=hti �!
�

G=T

where the map i is the inclusion map; qhti and qT are the natural

projections of F and G on their respective quotient graphs.

This diagram allows the definition of a map � between both

quotient graphs as follows; for x 2 F, we set �[qhti(x)] = qT[i(x)].

It is easily verified that � is well defined (i.e. the result does not

depend on the choice of the vertex or edge x of F) and that it is

a graph homomorphism.

Proposition 4.1. The quotient graph F/hti of a T-fiber in a

periodic graph (G, T) is isomorphic to a subgraph of the

quotient graph G/T.

Proof. We need only show that the graph homomorphism � is

injective. We prove it for the vertex set; a similar argument

applies to the edge set of F/hti. Suppose that A and B are two

distinct vertices of F/hti with �(A) = �(B). Then, there exist two

vertices a and b of F, which we identify to their images by

inclusion in G, such that: A = qhti(a) 6¼ qhti(b) = B and qT(a) =

qT(b). This implies that the two vertices a and b of F are

related by some translation s of T, so that b = s(a) 2 F \ sF

with s =2 hti, in contradiction with Proposition 3.2. &

Example 4.1. Trivially, in the case of the square net, the natural

projection of the strong geodesic shown in Fig. 2(c) is the loop

with voltage 01.

Example 4.2. Fig. 4(a) shows the net (4.82) and two geodesic

T-fibers, one along the direction 11, which is a strong geodesic,

and the other along 10. Their quotient graphs are drawn in Fig.

4(b) to Fig. 4(d), respectively.

Example 4.3. Fig. 5(a) shows the �-W net and two geodesic

T-fibers; the first along the direction 11, which is again a strong

geodesic, and the second one along 01. Their quotient graphs

are drawn in Fig. 5(b) to Fig. 5(d), respectively.

In Examples 4.1 to 4.3, the quotient graph of the T-fiber is a

subgraph of the quotient graph of the net, as expected. But it

has also been possible to write the labeled quotient graph of

the T-fiber by attributing to each common edge the same

voltage in the quotient F/hti as in the quotient graph G/T of the

net. Notice that the quotient graph of a strong geodesic is a

cycle, so one can re-label the quotient by attributing the net

voltage over the cycle to an arbitrary edge, as has been done in

Fig. 4(c) and Fig. 5(c). These observations can now be

generalized.

Theorem 4.1. The labeled quotient graph of a geodesic T-fiber

(F, hti) in a periodic graph (G, T) is a labeled subgraph of the

labeled quotient graph G/T.

Proof. Consider a T-fiber (F, hti) of a periodic graph (G, T)

with labeled quotient graph G/T. An arbitrary cycle C of F/hti

is the projection by qhti of a (maybe closed) walk between two

vertices that are equivalent by hti. This walk projects by qT on

the cycle �[C], which (following Proposition 4.1) we can

identify to C by inclusion of F/hti in G/T. Since hti is a

subgroup of T, the net voltage over �[C] in G/T belongs to the

subgroup hti. It is then always possible to attribute the same

voltage to the edges of the quotient graph F/hti as their images

by � in G/T. &
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Figure 4
The net (4.82) and two geodesics fibers (a) along the directions 11 and 10,
with their quotient graphs (b), (c) and (d), respectively.

Figure 5
The �-W net and two geodesic fibers (a) along the directions 11 and 01,
with their quotient graphs (b), (c) and (d) respectively.



As was seen in the case of strong geodesics, commented on

above, it can naturally happen that the voltages attributed to

the edges of F/hti do not belong to the translation group hti.

What really matters, however, is that the net voltage over any

cycle of the quotient F/hti is a translation of hti. Relabeling can

then be performed by using a spanning tree of F/hti and

attributing the net voltage of the cycle to the corresponding

chord.

Theorem 4.1 allows a procedure to be outlined to determine

T-fibers directly from the labeled quotient graph G/T of their

parent n-periodic graph. Initially, one must define the direc-

tion t of the fiber, based on the fact that the translation group

hti contains the net voltage of some cycle of G/T. One selects

then a cycle C of G/T with shortest reduced length among all

those cycles or combinations of cycles with net voltage in

Ext(t). This ensures that ]C[ is a geodesic but does not ensure

yet that it is a subgraph of some fiber. If there is some

combination of cycles with (a) total net voltage in Ext(t) but

individual net voltages not all in Ext(t), (b) the same reduced

length as C, and (c) such that their union with C forms a

connected graph, then the periodic graph has no fiber parallel

to the corresponding direction. By completeness, all cycles

within the combination should be included into the quotient

graph of the fiber since they allow the construction of geodesic

paths alternative to those obtained by lifting the chosen cycle

in the periodic graph. But then, the derived graph would not

be 1-periodic.

Example 4.4. Consider the cancrinite net whose labeled

quotient graph is drawn in Fig. 6. The shortest cycle of net

voltage 102 and length 8 has been thickened in Fig. 6(a) and

two cycles with net voltages 101 and 001 and lengths 6 and 2,

respectively, have been thickened in Fig. 6(b). Observe that

the union of the three cycles forms a connected subgraph.

Since a path obtained by lifting the latter two cycles together

has equal length to a path constructed from the former, all

three cycles must be included in the quotient graph of a

maybe-fiber along 102 in order to satisfy to completeness. But

then, the derived graph is two-dimensional since its quotient

admits two cycles of independent voltages 101 and 001. Thus,

cancrinite has no fiber along direction 102 but it might have

fibers along directions 101 and 001. This example leads

directly to the enunciation of Proposition 4.2.

Let us assume that it has been possible to choose a cycle C

of net voltage t according to the aforementioned conditions. If

another cycle C0 of G/T with net voltage in Ext(t) and the same

reduced length as C intersects it, its lift is another possible

geodesic path between two equivalent vertices in G that

project on a common vertex of C and C0. The corresponding

geodesic ]C0[ must then also belong to F. This shows that the

quotient graph F/S of the fiber contains all the cycles of G/T

with net voltage in Ext(t) that have same reduced length and

form a connected subgraph, say H, of G/T. On the other hand,

F must contain all the geodesic paths existing (recursively) as

‘transversal’ paths between vertices of all the geodesics

parallel to ]C[. By natural projection on F/S, these ‘transversal’

paths together with segments of the cycles with non-null net

voltage generate cycles with net voltage null. This shows that

cycles of G/T with net voltage null must also be included in the

quotient F/S if they provide short-cuts to paths in H. By

construction, the generated subgraph of G/T does not contain

any cycle with net voltage outside the subgroup Ext(t); then its

derived graph is certainly a geodesic fiber, since it is 1-peri-

odic, geodesically complete and minimal. For the sake of

clarity, the previous conclusions are summarized in the

following algorithm.

Algorithm 4.1. To get the quotient graph H = F/S of a T-fiber

(F, S) along a direction in Ext(t) from the quotient G/T of a

periodic graph (G, T):

1. List all cycles of G/T, computing their lengths and net

voltages.

2. Choose a cycle (loop) C with net voltage in Ext(t) and

shortest reduced length and check (a) that there is no

combination of cycles (loops) with total net voltage in Ext(t)

and shorter reduced length than C, and (b) that there is no

combination of cycles (loops) with individual net voltages not

all in Ext(t), but total net voltage in Ext(t), reduced length

equal to C, and forming a connected subgraph with C.

3. Form the connected subgraph H of G/T of all the cycles

with same reduced length as C and net voltage in Ext(t).

4. Add recursively to H all the cycles of G/Twith net voltage

null, if they provide short-cuts to paths already in H.
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Figure 6
(a) A shorter cycle along 102 in the quotient graph of cancrinite and (b)
two intersecting cycles along 101 and 001 with the same total length.



5. Get the translation group S of F as the subgroup gener-

ated by the net voltages of all cycles in H.

Proposition 4.2. Every n-periodic graph admits at least n

T-fibers in n independent directions.

Proof. A strong obstacle for a cycle C of G/T with shortest

reduced length to generate a T-fiber parallel to the corre-

sponding direction is completeness. If there is a closed walk W

obtained by combining cycles Ci with net voltages not all in

Ext(t), but total net voltage in Ext(t), whose union with C

forms a connected graph, and such that W has same reduced

length as C, then all cycles Ci should belong to the quotient

graph of the fiber. Indeed, the lift of W provides an alternative

geodesic path to that of C. But then the fiber should contain

the inverse image of the support of W and would be at least

2-periodic. In this case, the cycle C cannot generate any fiber;

but instead, we can search for T-fibers parallel to the direction

of the shorter cycles Ci, starting again Algorithm 4.1 from step

2. Since the total number of cycles of the quotient graph is

finite, the search for shorter cycles satisfying step 2 of Algor-

ithm 4.1 must end with at least n cycles in n independent

directions for n-periodic graphs. &

Example 4.5. The quotient graph of the net (4.82) shown in Fig.

4 admits four 3-cycles, two with net voltage 10 and two with

net voltage 01, and three 4-cycles with net voltages 11, 1�1

and 00, respectively. The unique and shortest 4-cycle along 11

(respectively, 1�1) is the quotient graph of a strong geodesic.

Along direction 10 (respectively 01), the two 3-cycles have a

common edge; the union graph of both cycles, shown in Fig.

4(d), already contains the 4-cycle with net voltage null. It is

thus the quotient graph of a fiber along 10.

Example 4.6. The quotient graph of the �-W net shown in Fig.

5 admits three 2-cycles, one with net voltage 10 and two with

net voltage 01, and eight 3-cycles, two with net voltage 10, two

with net voltage 01, one with net voltage 11, one with net

voltage 1�1 and two with net voltage 00. The unique 3-cycle

along 11 (respectively, 1�1) is the quotient graph of a strong

geodesic. The shortest cycles along 01 are 2-cycles with a

common vertex. The union graph H of these two cycles shares

two edges with both 3-cycles with net voltage null, so that the

third edge is a short-cut and must be added to H to get the

quotient graph of a fiber along 01, as shown in Fig. 5(d). The

shortest cycle along 10 is a 2-cycle with only one edge in

common with 3-cycles of net voltage null; consequently, the

3-cycles do not provide any short-cut to paths in the 2-cycle,

which is thus the quotient graph of a strong geodesic along 10.

Example 4.7. In the bouquet B2 of two loops, insert a new

vertex on one loop and two vertices on the other. Attribute

the voltages 2 and 3 in Z, respectively to these loops. Both

have the same reduced length and a common vertex, so they

generate a unique fiber by lifting. The translation group is

h2, 3i = Z; it is thus a fiber along Z = h1i, but its quotient graph

has no cycle (or loop) with net voltage 1.

Definition 4.1. A T-fiber (F, hti) is called simple if its quotient

graph displays a cycle (or loop) with net voltage t.

Example 4.8. In the bouquet B2, attribute the voltages 1 and 2

in Z to the loops. The loop with voltage 2 generates two

disjoint parallel simple fibers, which are mapped to each other

by the translation 1; note that this result is in agreement with

Proposition 3.2, since 1 is not in h2i.

5. Invariance of fibers

Let � be a local automorphism of a periodic graph (G, T), not

necessarily in T. This means that (G, T) may not be a crys-

tallographic net. In this case, we know that � need not respect

vertex and edge lattices of (G, T). But what can we say about

mappings of T-fibers? Another fundamental and correlated

question is: what can we say in general about an arbitrary fiber

(F, h�i)? In fact, these questions cannot be dealt with separ-

ately since the image of a T-fiber (F, hti) is a priori an arbitrary

fiber (�F, h�.t.��1
i). We shall begin this section by proving a

more general property, namely that any infinite geodesically

complete subgraph of a periodic graph contains at least one

half geodesic. This result will enable us to show that any fiber

is close enough to a half geodesic at infinity, which leads to

Theorem 5.1, stating that any T-fiber of a periodic graph is

mapped on a parallel T-fiber. We shall then be able to state

Theorem 5.2, which establishes the identity between fibers and

T-fibers.

Lemma 5.1. Given a vertex x of a fiber (F, h�i), for any vertex y

of F one can define an integer k such that y 2 B[�k(x), �],

where B[a, �] is the ball of center a and radius �, called the

diameter of the fiber.

Proof. Since a fiber is a 1-periodic graph, one can define the

quotient graph F/h�i. Choose a spanning tree of F/h�i of

diameter �, defined as the maximum distance between two

vertices of the spanning tree: � represents the size of the unit

cell of F. &

Lemma 5.2. Given an infinite geodesically complete subgraph

H of a periodic graph (G, T), any infinite sequence xn of

vertices of H induces at least one half-geodesic contained in H.

Proof. The argument is based on the construction of an

adequate sequence of paths in H. We assume first that the

sequence xn has been ordered so that the distance d(x0, xn) is

an increasing function of n, and associate a sequence of

geodesic paths Pn = x0xn in H; note that the paths Pn are

chosen arbitrarily but once and for all. Then, we project the

paths Pn on G/T by the natural projection qT; the mapped
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walks Wn, starting at X = qT(x0), decompose into a path and a

number of cycles of G/T. Since the total number of cycles of

G/T is finite, and since the length of the geodesic path Pn can

be made arbitrarily large, at least one cycle C of G/T (maybe a

loop) will appear with unbounded coefficient in the decom-

position of the walks Wn. Let us extract a subsequence of

vertices ym (possibly with repetitions) from the sequence xn

such that the projection of the corresponding geodesic path

x0ym in G/T contains at least m copies of the cycle C. Orient

this path from x0 to ym and call am the first vertex along the

path x0ym whose projection Am belongs to C, and bm the last

vertex along x0ym from the same vertex lattice Am. Consider

then the projection W of the geodesic path x0ym+1 =

x0am+1bm+1ym+1, split into three parts by the vertices am+1 and

bm+1. The first part x0am+1 projects on a walk W0 from X to the

vertex Am+1 of C, which cannot contain C in its decomposition;

the projection K of the second part is a closed walk based on

Am+1, which contains at least (m + 1) copies of the cycle C, and

a sum
P

of cycles of G/T; the last part projects on another

walk W00 from Am+1 to the projection of ym+1. Observe that the

sum of cycles C +
P

is a 1-chain of G/T, which has the same

support as the projection K of the walk am+1bm+1; according to

Proposition A.1 given in Appendix A, we can recombine the

closed walk K by traversing first all (at least m) copies of C but

one, followed by a closed walk derived from the sum C +
P

.

This walk is lifted to another geodesic path between am+1 and

bm+1, which belongs to H by hypothesis. In particular, the path

lifted from the m copies of C and starting at the vertex am+1 is

contained in H.

The main body of the proof is by induction on the number

of different cycles that appear with unbounded coefficient in

the decomposition of the set of walks qT(x0ym) (which is a

subset of the walks Wn). Suppose that a single cycle C of G/T

appears with unbounded coefficient in this decomposition.

Then, the number of possible walks W0 is finite, and so is the

set of vertices am in H; at least one of them is thus the endpoint

of a half geodesic [amC[ contained in H. Suppose now that the

lemma is true when at most p different cycles of G/T appear

with unbounded coefficient in the decomposition of the walks

Wn and consider the same construction as above in the case of

p + 1 different cycles. It is again possible that the set of vertices

am be finite, in which case the same conclusion as above can be

drawn. If, on the contrary, the set of am is infinite, we apply the

whole argument to this new set, in substitution to the set xn,

defining a0 = x0. Note that the geodesic path from a0 to am

necessarily corresponds to the first part of the path Pn already

defined. Since the projection of the walk a0am does not contain

the cycle C, the induction hypothesis applies to the sequence

of am, so that H also contains a half geodesic [C[ in the case

p+1. &

Lemma 5.3. Any fiber (F, h�i) contains at least two half-

geodesics [C+[ and [C�[ describing its behavior at infinity.

Proof. Pick an arbitrary vertex x of F and form the sequences

X+ = {�n(x), n 2 N} and X� = {� �n(x), n 2 N}. From Lemma

5.2, we can find two half-geodesics [aC+[ and [bC�[ contained

in F induced by X+ and X�, respectively. Call t+ and t� the net

voltages on the cycles C+ and C�.

From Lemma 5.1, any vertex of [aC+[ is at less than a

distance � from some vertex �k(x) in F. Conversely, the

projection of [aC+[ on the quotient graph F/h�i is a 1-chain,

which, as the projection of a geodesic, must be consistent with

the voltages, that is, it decomposes in cycles which have net

voltages along a constant direction of h�i. In other words,

[aC+[ crosses successively all unit cells of the 1-periodic graph

F from its endpoint a in a direction consistent with one of the

automorphisms � or ��1. Consequently, every vertex of F on

one ‘side’ of the vertex a is at less than a distance � from some

vertex of [aC+[. By construction, it is clear that [aC+[ is asso-

ciated with � so that, more precisely, every vertex �k(x) for a

sufficiently large (positive) value of k is at a distance less than

� + jt+j from some vertex tn
þðaÞ. In the same way, every vertex

of [bC�[ is at less than a distance � from some vertex �k(x)

with k < 0. &

Lemma 5.4. If �F is the image of a T-fiber (F, hti) by a local

automorphism �, both half geodesics describing its behavior at

infinity are parallel to F.

Proof. Let s 2 {t+, t�} be the net voltage on the cycle C 2

{C+, C�} defining the half geodesic [aC[ in �F. Consider now

the sequence of translated vertices sn(a) in [aC[, standing at

the increasing distance n|C| from the initial vertex a. Following

Lemma 5.1, their pre-images, which are at this same distance

n|C| from the vertex y = ��1a in F belong to the ball B[tk(y), �]

for some integer k. This can be written as follows:

df��1
½sn
ðaÞ�; tk

ðyÞg � �:

Since �, and thus ��1, are local automorphisms, we can also

write

dfsnðaÞ; ��1½snðaÞ�g � j�j and dftkð��1aÞ; tkðaÞg � j�j;

so that:

dfsn
ðaÞ; tk

ðaÞg � �þ 2j�j:

Clearly, the last distance d{sn(a), tk(a)} cannot remain

bounded for arbitrarily large values of n unless s 2 Ext(t) and

the corresponding cycles have same reduced length. &

Lemma 5.5. Any geodesically complete subgraph of a periodic

graph containing two parallel half geodesics [C+[ and ]C�] also

contains the full geodesics ]C+[ and ]C�[.

Proof. We suppose here that a geodesically complete subgraph

H of some periodic graph (G, T) contains two half geodesics

[aC+[ and ]C�b], where the cycles C+ and C� of G/T may have

different net voltages t� and t� but have the same reduced

length, so that �jC+j = �jC�j. We shall show that H also

contains the translated half geodesic ]C�t��(b)], so that, by

induction, it contains the whole geodesic ]C�[.
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The situation is represented in Fig. 7 in the case � = � = 1.

We consider the sequence un � d{b, tn�(a)}. It is clear that, for

sufficiently large values of n, the sequence is an increasing

function of n. Moreover, we can write:

unþ1 ¼ dfb; tðnþ1Þ�
ðaÞg

� dfb; tn�
ðaÞg þ dftn�

ðaÞ; tðnþ1Þ�
ðaÞg ¼ un þ jCþj ð1Þ

njCþj ¼ dfa; tn�ðaÞg

� dfa; bg þ dfb; tn�
ðaÞg ¼ dfa; bg þ un: ð2Þ

Consider the set S of integers n for which un+1� un < jC+j. This

set is bounded, otherwise relation (2) could not hold for

arbitrarily large values of n. Call then m the maximum value of

S: for all n > m, we have d{b, t(n+1)��(a)} = d{b, tn��(a)} + �jC+j.

By completeness of the subgraph H, the path

btn��(a)t(n+1)��(a), from b to tn��(a) and then to t(n+1)��(a)

along ]C+[, which is a geodesic path, can be substituted by the

alternative path from b to t��(b) along the geodesic ]C�[, of

length �jC�j, followed by the image path t��{btn��(a)} =

t��(b)t(n+1)�� (a). This shows that the path bt��(b) along ]C�[

belongs to H and, thus, also the half geodesic ]C�t��(b)] up to

vertex t��(b). &

Theorem 5.1. Local automorphisms in periodic graphs (G, T)

map T-fibers on parallel T-fibers.

Proof. From Lemmas 5.4 and 5.5, the image �F of any T-fiber

(F, hti) by a local automorphism � in a periodic graph (G, T)

contains a full geodesic ]C�[. From Algorithm 4.1, we

conclude that �F must also contain the T-fiber generated by

the cycle C�, in order to satisfy to completeness. But then,

according to the minimal criterion, �F is exactly the T-fiber of

(G, T) determined by the cycle C� and the vertex b. &

Theorem 5.2. Every fiber of a periodic graph (G, T) is also a

T-fiber.

Proof. Consider a fiber (F, h�i) and the half geodesics [aC+[

and [bC�[, defined as in Lemma 5.3. The natural projection of

[bC�[ on F/h�i is a walk, which traverses infinitely many times

at least one vertex of this quotient graph. We can thus find two

vertices, say u and v, of [bC�[ that belong to the same vertex

lattice of F/h�i, so that v = �k(u) 2 [bC�[ for some positive

integer k. On the other hand, the full geodesics ]C�[ and ]C+[

certainly satisfy the criteria listed in Algorithm 4.1 for T-fibers,

otherwise F could not be a fiber either. Let then (F0, hsi) and

(F00, hti) be the T-fibers generated by the geodesics ]C�[ and

]C+[, running through the vertices b and a, respectively.

According to Theorem 5.1, the image �kF0 is also a T-fiber

parallel to F0. But then, v is a common vertex to F0 and to its

image �kF0, which means (following Proposition 3.1) that both

T-fibers are identical: �kF0 = F0. That is: F0 is invariant by �k. Let

us call � and �0 the diameters of the fibers F and F0, respec-

tively. According to Lemma 5.1, for any integer n we can find

an integer m such that �nk(u), as a vertex of F0 belongs to the

ball B[sm(b), �0]. Now, for sufficiently large values of n we can

send the image �nk(u), as a vertex of F, on the ‘side’ of the half

geodesic [aC+[; according to Lemma 5.3, it is thus possible to

find an integer p so that this vertex belongs to the ball

B[tp(a), �+jt j]. Clearly, this is not possible unless the T-fibers

F0 and F00, and so the half geodesics [C+[ and ]C-], are parallel.

Then, according to Lemma 5.5, the fiber F contains the full

geodesic ]C�[ and so must be identical to F0. &

Theorems 5.1 and 5.2 have deep implications concerning the

nature of local automorphisms of periodic graphs (G, T) that

are not crystallographic nets. As recalled above, some local

automorphisms that are not in T do not respect vertex and

edge lattices of G, so that it is not possible to define a

consistent action of the product qT * � * qT
�1 on the quotient

graph G/T. For example, if we lift a cycle of G/T with non-null

net voltage, map the resulting path in G by the local auto-

morphism � and finally get its image by the natural projection

qT, we do not obtain generally a cycle of G/T. However,

Theorem 5.1 shows that the subgraphs of G/T corresponding

to projections F/hti of T-fibers are globally mapped on the

subgraphs of parallel T-fibers by local automorphisms. Some

applications are examined in the next sections.

6. Minimal nets

An important class of periodic graphs has maximal rank of the

translation group T for the associated quotient graph. In this

section, we consider finite c-connected graphs of cyclomatic

number � and attribute independent voltages from a transla-

tion group T of rank � to the chords of a spanning tree. The

derived �-periodic graph is called a minimal net (Beukemann

& Klee, 1992). We first analyze the nature of geodesic T-fibers

in minimal nets, from which we deduce the important result

expressed in Theorem 6.1.
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Two half geodesics [aC+[ and ]C�b] parallel to the same direction t (see
text).



Proposition 6.1. Geodesic T-fibers in minimal nets are strong

geodesics in 1–1 correspondence with the cycles or loops of

the quotient graph.

Proof. No cycle of the quotient graph can have a net voltage

null and no two cycles or loops can have the same net voltage.

If some cycle is the combination of independent cycles of the

quotient graph, then its length is shorter than the sum of the

lengths of the combined cycles, since common edges are

deleted in the addition process. It follows from Algorithm 4.1

that geodesic T-fibers in minimal nets are strong geodesics, in

one-to-one relation with the cycles or loops of the quotient

graph. &

Proposition 6.2. The group of local automorphisms of a

minimal net derived from a c-connected graph acts freely on

the net.

Proof. Consider a local automorphism f of the minimal net

with a fixed vertex a and take an incident edge e = ab. If e

belongs to some strong geodesic of the minimal net, then it is

fixed by f, since the image of a geodesic is a parallel geodesic

running through the same vertex a. Suppose, on the contrary,

that no geodesic runs through the chosen edge and that b is

mapped on another vertex c. Since the quotient graph is

c-connected, at least one cycle or one loop runs through vertex

B, the natural projection of b on the quotient graph, that is: at

least one strong geodesic runs through vertex b in the minimal

net. This geodesic maps a parallel geodesic running through

vertex c, which can therefore be projected on a cycle or loop of

the quotient graph with the same net voltage as the cycle or

loop through vertex B. But no two cycles or loops of the

quotient can have the same net voltage: it is thus the same

cycle (it cannot be a loop) that runs through B and through the

projection C of vertex c. Neither the edge AB, projection of

the edge e on the quotient, nor the image AC of the mapped

edge can belong to this cycle by hypothesis. However, running

along this cycle from B to C, then back to B through the edges

CA and AB, gives a new cycle of the quotient and thus a

geodesic of the minimal net containing the edge e, a contra-

diction. We conclude that vertex b is also fixed by the auto-

morphism f. This way, all vertices linked to a fixed vertex are

also fixed vertices. By induction, the whole net must be fixed,

since it is connected, and the unique local automorphism with

a fixed vertex is the identity.

A similar argument shows that the unique local auto-

morphism with a fixed edge is the identity. Suppose the edge

e = ab is mapped on the opposite edge ba. Then, a cycle C of

G/T running through A is mapped on the same cycle running

through B. Taking a path between A and B along C, which

does not contain the edge AB and completing with this edge,

we obtain a cycle of G/T running through AB. This means that

e lies on a strong geodesic. A local automorphism, however,

cannot reverse the orientation of a strong geodesic; otherwise

it fails to be ‘local’. The unique possibility to have a fixed edge

while mapping the geodesic on itself is then to have two fixed

vertices, a and b. &

Theorem 6.1. Minimal nets derived from c-connected graphs

are crystallographic nets.

Proof. According to Eon (2005), it is sufficient to show that the

group of local automorphism is equal to the translation group

T. The argument is based on the structure of the quotient

graph Q of the minimal net. If there is only one cycle in Q, the

derived graph is the linear net and its local automorphism

group is isomorphic to Z. Suppose there are at least two cycles

in Q. For an arbitrary cycle C, we choose a nearest cycle C0

(by nearest cycle, we mean that the smallest distance between

two vertices x of C and y of C0 is minimum; note that in a

c-connected graph this distance is 0 or 1). Three distinct cases

can arise:

(i) C and C0 are disjoint; the union graph of the two cycles

together with the unique edge linking them is a subgraph of Q

homeomorphic to 2(3)2 (Fig. 8a);

(ii) C and C0 share a single vertex; the union graph of the

two cycles is a subgraph of Q homeomorphic to 1(4)1 (Fig. 8b);

(iii) C and C0 share a common path; the union graph of the

two cycles is a subgraph of Q homeomorphic to 2(3)1 (Fig. 8c).

Remarkably, the aforementioned subgraphs are the

quotient graphs of the three two-dimensional minimal nets.

The same argument applies in each case.

From Proposition 6.1, any cycle C of Q lifts to a strong

geodesic ]C[. From Theorem 5.1, a strong geodesic ]C[ is

mapped on a parallel geodesic by any local automorphism �.

Then, from Proposition 6.1 again, the image geodesic �]C[

must project on the same cycle C of Q. We can therefore

interpret the action of the local automorphism on each strong
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Figure 8
The quotient graphs of the two-dimensional minimal nets: (a) 2(3)2, (b)
1(4)1, (c) 2(3)1 and (d) the minimal net derived from 2(3)2. The
nomenclature is the same as in Beukemann & Klee (1992).



geodesic, viewed in projection on the quotient graph, as a kind

of rotation applied separately to the associated cycle of Q. In

the three limit cases, however, the cycles C and C0 cannot

rotate freely since they are linked by an extra edge in (i), a

common vertex in (ii) or a common path in (iii) that cannot

follow the rotation in both cycles simultaneously: both cycles

must be fixed. As a consequence, at least one vertex, say a, of

the minimal net is mapped on a vertex of the same vertex–

lattice, so that there is a translation t which acts the same way

as � on vertex a. Then, t�1�(a) = a and, from Proposition 6.2,

� = t. &

Example 6.1. The 2-periodic net shown in Fig. 8(d) is the

minimal net derived from the graph 2(3)2 of Fig. 8(a), after

attributing voltages 10 and 01 to the loops. The net is a crys-

tallographic net and its automorphism group is isomorphic to

that of the square net.

7. Crystallographic and non-crystallographic nets

The 2-periodic graph shown as a planar embedding in Fig. 9(a)

is not a crystallographic net, since it admits local auto-

morphisms with fixed vertices, such as the permutation p =

(a, b), which exchanges only the two vertices labeled a and b

on the figure, together with the incident edges. The labeled

quotient graph associated with this planar embedding is given

in Fig. 9(b). The periodic graph presents a family of strong

geodesics in the direction 10, which project on the loop of the

quotient graph and another family of geodesic fibers along 01.

These fibers project on the right part of the quotient graph,

that is, the quotient graph of the fiber is obtained from that of

the net by simply deleting the loop with voltage 10. Now, we

notice that there exists an automorphism of the quotient

graph, which we shall denote by (A, B), that exchanges each

edge CA with the edge CB of the same voltage, so that every

cycle (or loop) of the graph maps a cycle (or loop) with the

same net voltage. The vertex C, the edge AB and the loop on

C are fixed elements of the automorphism (A, B), indicating

that there are local automorphisms of the 2-periodic graph

with fixed elements (Eon, 2005). We can choose among these

automorphisms one that exchanges the vertices a and b, as

does the automorphism p, and holds fixed all geodesic fibers of

the periodic graph. Informally, this automorphism can be

interpreted as an extension by the translation group of the

automorphism (a, b) to the whole 2-periodic graph.

It was implicitly assumed in Eon (2005) that the absence of

automorphisms of the labeled quotient graph mapping cycles

(loops) on cycles (loops) with the same net voltage should

ensure that the derived periodic graph is a crystallographic

net. It is possible to verify this assertion in particular cases by

analyzing the images of geodesic T-fibers by local auto-

morphisms. With Theorems 4.1 and 5.1, the analysis can be

performed directly on the quotient of the periodic graph.

Example 7.1. The labeled quotient graph of the net (34.6),

represented in Fig. 3, has been drawn in Fig. 10(a). The labeled

quotient graphs of the geodesic fibers along directions 10 and

21 are shown in Figs. 10(b) and 10(c), respectively. Fig. 10

evidences the graph–subgraph relationship between the
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Figure 9
(a) A non-crystallographic net and (b) a possible quotient graph.

Figure 10
(a) Quotient graph of the net (34.6) with the quotient graphs of its two
geodesic fibers along directions (b) 11 and (c) 21.



labeled quotient graph of the net and those of its fibers. For

the sake of clarity, however, the quotient graphs of the fibers

have been re-drawn and re-labeled in Figs. 11(a) and 11(b),

respectively. Both quotient graphs contain the six vertices of

the quotient graph of the periodic net, so that (by Proposition

3.1) there is only one equivalence class of fiber by translation

parallel to each direction, which (by Theorem 5.1) must be

mapped onto itself by any local automorphism. To respect the

structure of the fiber along the direction 21, the path BADE

must then be conserved, up to translation. This implies that

the four vertex lattices B, A, D and E of the net are mapped on

themselves by any local automorphism. But then some

vertices from the vertex lattices C and F could exchange,

which possibility appears to be excluded when looking at the

fiber along direction 10 since vertices from B and E should

then also exchange in order to respect adjacency relationships

in this fiber. We conclude that all vertex lattices of the net

(34.6) map on themselves by any local automorphism, and so

that any local automorphism is a translation. Consequently,

the net is a crystallographic net.

8. Order of fixed-vertex automorphisms

The only local automorphisms of strong geodesics, considered

as 1-periodic graphs, are translations along the respective

direction; this is clearly the fundamental reason why minimal

nets derived from c-connected graphs are crystallographic

nets. It is thus natural to analyze local automorphisms of

geodesic T-fibers in general and more particularly local

automorphisms with fixed vertices before we can decide about

the order of local automorphisms in n-periodic graphs.

Lemma 8.1. Let f be an automorphism of an infinite graph G. If

the cardinality of the orbits by f of the vertices of G is

uniformly bounded, then f has finite order.

Proof. Let m be the superior bound of the cardinalities of the

orbits by f ; any vertex x of G has then order q < m. But then,

for all vertices x, f m!(x) = x. &

Corollary 8.1. Local automorphisms of 1-periodic graphs with

a fixed vertex have finite order.

Proof. Let f be a local automorphism of a 1-periodic graph

(G, T) with a fixed vertex v. In a 1-periodic graph, the number

of vertices at some distance d from v is certainly bounded (in

each orientation of the graph) by the number m of vertex

lattices of the quotient graph G/T. Since local automorphisms

conserve the distances as well as the orientation of the fiber,

the orbit of each vertex contains at most m vertices. &

Theorem 8.1. Local automorphisms of n-periodic graphs with

fixed vertices have finite order.

Proof. Let f be a local automorphism of an n-periodic graph

(G, T) with a fixed vertex v. From Proposition 4.2, we can

choose a set of n T-fibers Fi oriented along n independent

directions of the periodic graph. Given any vertex x, we build a

path �x = �0p1�1 . . . pn�n, where the path pi belongs to a fiber

parallel to Fi and the path �i is added when necessary to

interlink the whole path between � and x through the

sequence of fibers. It is always possible to choose the paths pi

(that is: the particular fiber parallel to Fi) so that the length of

the paths �i is less than the diameter � of the quotient graph

G/T. From Theorem 5.1, each fiber Fi is mapped by f to a

parallel fiber, so that the path defining the image of vertex x

has the same structure as the path �x: �f(x) = f(�x) =

f(�0)f(p1)f(�1) . . . f(pn)f(�n). The cardinality of the orbit of

vertex x by f is then certainly bounded by the total number of

paths with the same characteristics for the paths �i and pi. This

upper bound in turn is limited by two factors:

(i) the number of vertices one can find at a distance less

than � from any vertex of the periodic graph G, which defines

the maximum number of endpoints of the paths �i;

(ii) the number of vertex lattices on each fiber, which

defines the maximum number of endpoints of the paths pi.

The upper bound certainly does not depend on the lengths

of the paths pi, which turns the limit uniform for all vertices of

the n-periodic graph. The result follows then from Lemma 8.1.
&

9. Final considerations

The topology of most crystal structures is described by

quotient graphs G with cyclomatic number larger than three.

In this case, the derived 3-periodic graph P with translation

group T is the partial quotient of the minimal net N associated

to the quotient graph G with respect to some translation

subgroup S of N. More specifically, if we denote by R the

translation group of the minimal net, we can write G = P/T =

N/R. The subgroup S of R is generated by the net voltages, in

the labeled quotient graph N/R, of the closed walks that have

a net voltage null in the labeled quotient graph P/T; we have

then P = N/S. P is called a partial quotient because it is

generated in the same way as the quotient graph N/R. But
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Figure 11
Re-labeling the quotient graphs of the geodesic fibers of the net (34.6)
along directions (a) 11 and (b) 21.



instead of using the full translation group R of the minimal

net, we define the set of vertex and edge orbits of N by a

subgroup S of lower rank so that T = R/S is again a translation

group. Of course, this process is also a natural projection of the

minimal net (Klee, 2004), but the partial quotient is an infinite

graph. The subgroup S is called the kernel of the projection.

Example 9.1. The ladder of Fig. 2(e) admits the same quotient

graph as the minimal net in Fig. 8(d), with relation to the

subgroup h01i of the square net. The labeled quotient graph of

the ladder is obtained from that shown in Fig. 8(a) by labeling

both loops with the same voltage 01. This indicates that the

ladder is a partial quotient of the minimal net in Fig. 8(d). The

kernel S of the natural projection is computed from the only

non-trivial closed walk of net voltage null in the labeled

quotient graph of the ladder. This walk follows one of the

loops, crosses the bridge, follows the other loop and comes

back through the bridge; it is in fact the image of a strong ring

of the ladder. The same walk in the labeled quotient graph of

the minimal net has net voltage 11 (or equivalently 1�1); the

ladder is thus the partial quotient of the minimal net in Fig.

8(d) by the translation subgroup S = h11i. The minimal net

admits two non-equivalent strong geodesics along directions

10 and 01, while the ladder displays only one strong geodesic

and one strong ring.

Although elementary, this example illustrates a quite

general phenomenon. The minimal net derived from a

c-connected graph is always, as we have seen, a crystal-

lographic net. Upon natural projection to get partial quotients,

however, one can obtain a non-crystallographic net. The

descent in the rank of the translation group of the partial

quotient upon projection is associated to two correlated

changes in the topological invariants of the periodic graph.

New rings describing the kernel of the projection (see Eon,

2006) are added; at the same time, strong geodesics are lost or

give way to geodesic fibers. One can thus hope that the

combined use of both kinds of invariants, strong rings and

geodesic fibers, present in most periodic graphs, will be useful

to the classification of non-crystallographic nets and of their

automorphism groups, directly from their labeled quotient

graph. This could be a precious tool for the synthetic chemist

interested in preparing new compounds based on these

certainly non-conventional topologies.

APPENDIX A

An elementary but important result needed for the proof of

Lemma 5.2 is given by the following proposition.

Proposition A.1. Any 1-chain W of a graph G that can be

written as a sum of cycles and has a connected support can be

traversed as a closed walk.

Proof. One can construct a new graph S0 from the support S of

W by substituting each oriented edge of S by a multiple edge

with multiplicity equal to its coefficient in the chain, and equal

orientation. Each cycle of the decomposition of the chain

contributes with two edges at each vertex of S0: one incoming

and one outgoing. In consequence, each vertex of S0 has equal

incoming and outgoing degrees. It is well known that

connected graphs with all vertices of equal incoming and

outgoing degrees are Eulerian: such an Eulerian (oriented)

circuit in S0 maps a closed walk in G after identifying again the

edges of each multiple edge. &

On projecting geodesic paths of a periodic graph on its

quotient graph and writing the associated 1-chains, it may

happen that some edges cancel out. In this case, these edges

correspond to the bridges between different components of

the support and cannot be traversed more than once in each

direction. However, Proposition A.1 can yet be applied if we

substitute such an edge by a 2-cycle, that is: a pair of edges

with opposite orientations, and agree to keep it as an effective

cycle in the decomposition of the 1-chain, instead of canceling

out. Since these 2-cycles appear in finite number in the

decomposition of any 1-chain, their presence does not affect

the argument developed in the proof of Lemma 5.2.
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